Finite Difference/Collocation Method for a Generalized Time-Fractional KdV Equation
نویسندگان
چکیده
Abstract: In this paper, we studied the numerical solution of a time-fractional Korteweg–de Vries (KdV) equation with new generalized fractional derivative proposed recently. The fractional derivative employed in this paper was defined in Caputo sense and contained a scale function and a weight function. A finite difference/collocation scheme based on Jacobi–Gauss–Lobatto (JGL) nodes was applied to solve this equation and the corresponding stability was analyzed theoretically, while the convergence was verified numerically. Furthermore, we investigated the behavior of solution of the generalized KdV equation depending on its parameter δ, scale function z(t) in fractional derivative. We found that the full discrete scheme was effective to obtain a numerical solution of the new KdV equation with different conditions. The wave number δ in front of the third order space derivative term played a significant role in splitting a soliton wave into multiple small pieces.
منابع مشابه
On a modication of the Chebyshev collocation method for solving fractional diffiusion equation
In this article a modification of the Chebyshev collocation method is applied to the solution of space fractional differential equations.The fractional derivative is considered in the Caputo sense.The finite difference scheme and Chebyshev collocation method are used .The numerical results obtained by this way have been compared with other methods.The results show the reliability and efficiency...
متن کاملApplication of high-order spectral method for the time fractional mobile/immobile equation
In this paper, a numerical efficient method is proposed for the solution of time fractional mobile/immobile equation. The fractional derivative of equation is described in the Caputo sense. The proposed method is based on a finite difference scheme in time and Legendre spectral method in space. In this approach the time fractional derivative of mentioned equation is approximated by a scheme of ord...
متن کاملSolution to time fractional generalized KdV of order 2q+1 and system of space fractional PDEs
Abstract. In this work, it has been shown that the combined use of exponential operators and integral transforms provides a powerful tool to solve time fractional generalized KdV of order 2q+1 and certain fractional PDEs. It is shown that exponential operators are an effective method for solving certain fractional linear equations with non-constant coefficients. It may be concluded that the com...
متن کاملApplications of He’s Variational Principle method and the Kudryashov method to nonlinear time-fractional differential equations
In this paper, we establish exact solutions for the time-fractional Klein-Gordon equation, and the time-fractional Hirota-Satsuma coupled KdV system. The He’s semi-inverse and the Kudryashov methods are used to construct exact solutions of these equations. We apply He’s semi-inverse method to establish a variational theory for the time-fractional Klein-Gordon equation, and the time-fractiona...
متن کاملA New Implicit Finite Difference Method for Solving Time Fractional Diffusion Equation
In this paper, a time fractional diffusion equation on a finite domain is con- sidered. The time fractional diffusion equation is obtained from the standard diffusion equation by replacing the first order time derivative by a fractional derivative of order 0 < a< 1 (in the Riemann-Liovill or Caputo sence). In equation that we consider the time fractional derivative is in...
متن کامل